View Single Post
  #90  
Old Posted Nov 9, 2011, 11:06 PM
M II A II R II K's Avatar
M II A II R II K M II A II R II K is offline
Registered User
 
Join Date: Aug 2002
Location: Toronto
Posts: 52,200
Plasmonic device converts light into electricity


Read More: http://www.physorg.com/news/2011-11-...ectricity.html

Quote:
While the most common device for converting light into electricity may be photovoltaic (PV) solar cells, a variety of other devices can perform the same light-to-electricity conversion, such as solar-thermal collectors and rectennas. In a new study, engineers have designed a new device that can convert light of infrared (IR) and visible wavelengths into direct current by using surface plasmon excitations in a simple metal-insulator-metal (MIM) device.

“The greatest significance thus far is to show an alternative method to rectennas and PV devices for IR and visible light conversion,” Melosh told PhysOrg.com. “The conversion efficiencies aren't amazingly high compared to a PV in visible, so it’s not going to replace PVs, but it could be used for energy scavenging later on.” The new device’s MIM architecture is similar to that of a rectenna. However, whereas rectennas operate with long-wavelength light such as microwaves and radio waves, the new device operates with a broad spectrum of infrared to visible wavelengths.

When the MIM device is illuminated, incoming photons are absorbed by the top and bottom metal electrodes. Upon absorption, each photon excites an electron in the metal into a higher energy state so that it becomes a “hot electron.” About half of the hot electrons travel toward the metal-insulator interface, where they may be collected by the other electrode. However, photon absorption in the upper and lower electrodes generates currents with opposite signs, so a net DC current is achieved only if the absorption is larger at one electrode than the other.

.....



Surface plasmons on the top electrode in the MIM device can increase the current from the top electrode so that it is greater than the current from the bottom electrode, generating a positive net current. Image credit: Wang and Melosh. ©2011 American Chemical Society






Electron transmission in MIM devices (a) with and (b) without surface plasmon excitations. (c) The measured photocurrent in a device with surface plasmons (black line) is higher than in a device without them (red line). Image credit: Wang and Melosh. ©2011 American Chemical Society

__________________
ASDFGHJK
Reply With Quote